Creep Test:

Creep testing of materials at high temperatures is a significant field of study at many levels of industry. Accurate high temperature creep data is essential for the proper design and construction of any structural element operating at elevated temperatures. As such, ways of improving upon conventional creep testing methods at high temperature are highly sought after.

 Test Method: IS: 1528 (P-18)1993 

Permanent linear Change:

This test helps in determining the critical linear markings and measurements in green condition, after drying and after firing. The permanent change in dimensions is quantified as linear change.

 Test Method: IS: 1528 (P-6)1974 

Pyrometric Cone Equivalent:

This test helps in determining the fire-clay variations, mining control, and developing raw material specifications.

 Test Method: 

Refractories Under Load:

This test helps in determining the deformation behavior of refractory ceramic products subjected to a constant load and increasing temperature.

 Test Method: ISO 1893 

Abrasion Test:

This test helps in determining the relative abrasion resistance of refractory brick at room temperature. This test method can be performed for castable refractories.

 Test Method: 

Air Permeability Test:

This test helps in determining the measurement of the air permeability of textile fabrics. This test method applies to most fabrics including woven fabrics, non-woven fabrics, air bag fabrics, blankets, napped fabrics, knitted fabrics, layered fabrics, and pile fabrics. The fabrics may be untreated, resin- treated, coated, heavily sized, or otherwise treated.

 Test Method:

 Petrographic Analysis by Optical Microscopy:

This test helps in determining the microscopic analysis of materials using thin sections of polished surfaces.

 Acid Resistance Test:

Test Method: This test helps in determining the acid resistance capacity of the refractory material.

 Test Method: IS: 4860-1968 

Thermal Conductivity:

Thermal conductivity depends upon the mineralogical and chemical compositions along with the glassy phase contained in the application and refractory temperature. The conductivity usually changes with rise in temperature. In case, where heat transfer is required through brick work, for example in recuperators, re-generators, muffles, etc. the refractory should have high conductivity. Low thermal conductivity is desirable for conservation of heat by providing adequate insulation.

 Test Method: IS: 1528 (P-16)1991 

Particle Size:

This test helps in determining the percentile quantity of particles of known diameter within a sample. The specimen can be passed in two ways. Either through a set of standard sieves in its natural state, or if a certain amount of binding material such as clay  is present, then the sample can first be washed over a small aperture sieve to remove such material.

 Test Method: IS: 1528 (P-14) 1974 

Water Absorption:

The amount of water that a refractory can absorb is measured by the water absorption test. The results of water absorption tests are used for quality assurance.

 Test Method: IS 3495 (P-2)1992 

Apparent porosity:

Apparent porosity, water absorption, apparent specific gravity, and bulk density are primary properties of burned refractory brick and shapes. These properties are widely used in the measurement and comparison of product quality and as part of the criteria for selection and use of refractory products in a variety of industrial applications.

 Test Method: IS: 1528 (P-8)1974 

Cold Crushing Strength:

This test helps in determining the strength of a brick. It specifies how much load the refractory can bear in cold conditions. Metallurgy gave birth to this concept of testing CCS of a refractory material. This is because for any refractory brick it is rather; rare that it would fail simply due to load on it in cold condition and therefore, the determination of cold crushing strength does not appear to be that much important from this point of view.

 Test Method: IS: 1528 (P-4)1974 

Bulk Density:

A useful property of refractories is bulk density, which defines the material present in a given volume. An increase in bulk density of a given refractory increases its heat capacity, its volume stability and resistance to slag penetration.

 Test Method: IS: 1528 (P-12)2009 

Modulus Of Rupture:

The modulus of rupture (MOR) is the maximum surface stress in a bent beam at the instant of failure. One might expect this to be exactly the same as the strength measured in tension, but it is always larger because the volume subjected to this maximum stress is small, and the probability of a large flaw lying in the highly stressed region is small.

 Test Method: IS: 1528 (P-5)1993, IS: 1528 (P-15)1991 

Dimensional Check:

Refractory materials must maintain dimensional stability under extreme temperatures (including repeated thermal cycling) and constant corrosion from very hot liquids and gases. The standard for refractory materials restricts compressive creep for normal working conditions to no more than 0.3 percent in the first 50 hours.

 Test Method: IS: 1077-1992, IS: 10570-1983 


Tags : Refactory Material Testing Lab in Bengaluru | Refactory Material Testing Lab in Tamil Naidu

Want to speak to our Customer Care Executive?

Just Submit Your Contact Details and We’ll be get in Touch With You Shortly.